所以在正式使用声学模型进行语音识别之前,我们必须对音频信号进行预处理和特征提取。初始的预处理工作就是静音切除,也叫语音检测(VoiceActivityDetection,VAD)或者语音边界检测。目的是从音频信号流里识别和消除长时间的静音片段,在截取出来的有效片段上进行后续处理会很大程度上降低静音片段带来的干扰。除此之外,还有许多其他的音频预处理技术,这里不展开多说。其次就是特征提取工作,音频信号中通常包含着非常丰富的特征参数,不同的特征向量表征着不同的声学意义,从音频信号中选择有效的音频表征的过程就是语音特征提取。常用的语音特征包括线性预测倒谱系数(LPCC)和梅尔频率倒谱系数(MFCC),其中LPCC特征是根据声管模型建立的特征参数,是对声道响应的特征表征。而MFCC特征是基于人的听觉特征提取出来的特征参数,是对人耳听觉的特征表征。所以,在对音频信号进行特征提取时通常使用MFCC特征。MFCC主要由预加重、分帧、加窗、快速傅里叶变换(FFT)、梅尔滤波器组、离散余弦变换几部分组成,其中FFT与梅尔滤波器组是MFCC重要的部分。是变换的简单示意,通过傅里叶变换将时域切换到频域。一个完整的MFCC算法包括如下几个步骤。。1)快速变换。
访问语音服务是需要账号登陆的吗?吉林语音服务设计
以安徽移动为例,语音服务导航系统于2013年3月上线,已面向全省客户开放,目前语音导航的日均呼叫量超过10万,降低整体人工话务量10%以上,减轻了人工成本。与此同时,语音服务导航系统的业务办理率相对于按键IVR系统明显提升,语音导航平均业务办理率15%以上,而传统IVR按键系统不到1%。在IVR中应用智能语音识别技术需要注意如下几点:1.深入分析业务需求,结合智能语音特点,确定智能语音应用范围智能语音通过技术创新,彻底消除了传统的按键菜单层级太多的瓶颈,从源头上解决按键式IVR面临的问题,但并不是所有业务都适合应用语音识别技术,例如卡号、手机号等大串数字输入,或者号码和英文字母混合的场景,输入错误一位则意味着输入失败,而“1”和“7”,“1”和“E”等发音非常相近,这种情况则不适合语音应用,使用按键输入更加合适。因此应用前需要和专业的智能语音厂商进行深入沟通,“扬长避短”的应用智能语音技术。2.持续优化是智能语音应用的关键,需要在推广、项目工期中做充分考虑。智能语音应用和移动互联网应用类似,通过用户的行为驱动系统进行更新,将不能识别的说法加入到语义模型中,调整智能语音系统的资源模型实现识别率的持续提升。青海无限语音服务语音服务可能会删除具有此类重复的行。
非异构计算的工程优化随着深度学习技术的进步,模型的建模能力越来越强大,随之而来的计算量需求也越来越高。近年来,很多公司都采用异构计算进行模型的inference,例如采用高性能或者inferenceGPU,甚至采用FPGA/ASIC这样的芯片技术来加速inference部分的计算,服务实际需求。对语音合成而言,大量的需求是需要进行实时计算的。例如,在交互场景上,语音合成服务的响应时间直接影响到用户的体验,往往需要从发起合成请求到返回语音包的时间在200ms左右,即首包latency。另一方面,很多场景的语音合成的请求量的变化是非常大的,例如小说和新闻播报场景,白天和傍晚的请求量往往较高,而深夜的请求量往往很低,这又对部署的便捷性和服务的快速扩展性带来了要求。我们仔细对比了不同的inference方案,考虑到我们终的使用场景要求,对快速扩展的要求,甚至客户不同机器的部署能力,我们终选择以非异构计算的形式进行inference计算,即不采用任何异构计算的模块,包括GPU/FPGA/ASIC等。
语音技术,其基本的技能应该是语音识别(ASR,AutomaticSpeechRecognition)和语音合成(TTS,TextToSpeech)。基于这两项功能,在语音技术领域,可以玩出很多花儿来!就拿语音识别来说,除了“语音转文字”这样简单的语音识别,还有对不同方言、不同环境场景,另外再加上另外一个AI能力“自然语言处理”,从而使语音识别更加“AI”。并且语音合成也是如此,处理简单的“文字转语音”,要玩出花来,还有对音色、语言、情绪等多维度进行“AI”赋能,语音合成也就也玩出花儿来!围绕着“语音”的特性,用思维导图画一下,就“语音”一词从大闹中闪现出来的与其相关名词或者特性:可见,语音数据,其相关的信息还是不少的。带着以上几个相关词语,我们逐一把各AI平台的语音能力梳理一遍,都了解一下踩着这两个语音技术AI能力的基石,国内各AI平台把语音技术挖掘的怎么样。横评内容:能力、描述、提供资源、调用方式、鉴权方式、请求方式内容、录音文件、费用、QPS、适用场景国内AI平台语音技术能力一览表。 语音服务端一方面可以表示用来提供语音识别服务的服务端。
用户设备确定单元620确定所述目标设备用户信息所对应的目标设备列表,目标设备列表包括针对目标设备用户信息的在多个设备区域配置信息下的多个受控设备信息。目标受控设备确定单元630为基于所述目标设备区域配置信息从所述目标设备列表中确定目标受控设备信息。操控单元640为基于所述语音消息,对所述目标受控设备信息所对应的目标物联网受控设备进行操控。上述本发明实施例的语音服务端和物联网主控设备可用于执行本发明中相应的方法实施例,并相应的达到上述本发明方法实施例所达到的技术效果,这里不再赘述。本发明实施例中可以通过硬件处理器(hardwareprocessor)来实现相关功能模块。另一方面,本发明实施例提供一种存储介质,其上存储有计算机程序,该程序被处理器执行如上的物联网设备语音控制方法的步骤。上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。本申请实施例的客户端以多种形式存在,包括但不限于:(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机。为了充分利用语音技术进行数字化转型,公司必须确保技术完全集成到数据驱动的客户体验平台中。吉林语音服务设计
自助语音服务是什么?吉林语音服务设计
一个典型的语音识别系统。语音识别系统信号处理和特征提取可以视作音频数据的预处理部分,一般来说,一段高保真、无噪声的语言是非常难得的,实际研究中用到的语音片段或多或少都有噪声存在,所以在正式进入声学模型之前,我们需要通过消除噪声和信道增强等预处理技术,将信号从时域转化到频域,然后为之后的声学模型提取有效的特征向量。接下来声学模型会将预处理部分得到的特征向量转化为声学模型得分,与此同时,语言模型,也就是我们前面在自然语言处理中谈到的类似N-Gram和RNN等模型,会得到一个语言模型得分,解码搜索阶段会针对声学模型得分和语言模型得分进行综合,将得分比较高的词序列作为的识别结构。这便是语音识别的一般原理。因为语音识别相较于一般的自然语言处理任务特殊之处就在于声学模型,所以语言识别的关键也就是信号处理预处理技术和声学模型部分。在深度学习兴起应用到语言识别领域之前,声学模型已经有了非常成熟的模型体系,并且也有了被成功应用到实际系统中的案例。例如,经典的高斯混合模型(GMM)和隐马尔可夫模型(HMM)等。神经网络和深度学习兴起以后。
吉林语音服务设计